R09 Set No. 2

I B.Tech Examinations, December 2010 MATHEMATICAL METHODS		
 Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, EC 3 hours Answer any FIVE Questions All Questions carry equal marks ????? 1. Verify Cayley Hamilton theorem and find the inverse of -1 1 -1 2. (a) Find a real root of the equation, x Sinx + Cos x = 0 using reg (b) Find y(32) if y(10)=35.3, y(15) = 32., y (20) = 29.2 y (25) 	A Marks: 75 -1 1 2 -1 . -1 2 [15] gula falsi method. = 26.1 y (30) =	
23.2, $y(35) = 20.5$ using Newton's forward interpolation for		
3. (a) Compute the first and second derivatives at $x=2.03$ of the form $\frac{x \ 1.96 \ 1.98 \ 2.00 \ 2.02 \ 2.04}{y \ 0.7825 \ 0.7739 \ 0.7651 \ 0.7563 \ 0.7473}$.	ollowing table:	
(b) From the following table of values of x and y find $\frac{dy}{dx}$ at x=0	.5D	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[8+7]	
4. (a) Find the maximum and minimum values of $f = 3x^2 + 5y^2 + 3z^2 - 2xy + 2zx - 2yz$ subject to $x + y + z = 1$. Also find the point at which the maximum and minimum exists.		
(b) Find the nature of the quadratic form $10x^2 + 2y^2 + 5z^2 - 4xy$ -	10zx + 6yz.[8+7]	
5. Find y(0.5), y(1) and y(1.5) given that $\frac{dy}{dx}$ =4-2x and y(0)=2 modified Euler's method.	with h=0.5 using [15]	
6. If $f(x) = x$ for $0 < x < \frac{1}{2}$. then prove that = $-x$ for $\frac{1}{2} < x < -x$.		
(a) $f(x) = \frac{4}{5} [\sin x\sin 3x + \frac{1}{5^2} \sin 5x].$		
(b) $f(x) = \frac{-2}{4} \begin{bmatrix} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \end{bmatrix}$	[8+7]	
7. (a) Solve $\frac{p}{x^2} + \frac{q}{y^2} = 1$.		
(b) Solve $p^2 + q^2 = z^2(x^2 + y^2)$.	[7+8]	
	2 1 -3 -6	

2 -3 2 8. (a) Find the Rank of the Matrix ,by reducing it to the normal form. 1 1 1 2 1

R09

Set No. 2

Code No: 09A1BS04

(b) Find whether the following system of equations are consistent. If so solve them.5x + 3y + 7z = 0, 3x + 26y + 2z = 9, 7x + 2y + 10 z = 5. [7+8]

R09

Set No. 4

I B.Tech Examinations, December 2010	
MATHEMATICAL METHODS Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE	Time:
3 hours Max Marks:	
Answer any FIVE Questions	. 75
All Questions carry equal marks	
?????	
	0.
1. Find the eigen values and the corresponding eigen vectors of 1 2 3	. [15]
2. Reduce the quadratic form to the canonical $3x^2-2y^2-z^2-4xy + 8xz+12yz$.	[15]
	at 1
3. (a) Solve $(x^3 + 3xy^2)p + (y^3 + 3x^2y)q = 2(x^2 + y^2)z$.	1.2
(b) Solve $x(y^2 - z^2)p - y(z^2 + x^2)q = z(x^2 + y^2)$.	[7+8]
	-1 2 5
4. (a) Find the Rank of the Matrix , by reducing it to the normal form. 2	1 4 3 .
	-13 5
(b) Solve the following tridiagonal system $3x - y = 5$, $x + 2y - 2z = 6$, $4y$	y + 3z = 1.
	[8+7]
5. Evaluate $\frac{R_1}{0} \frac{1}{1+x} dx$	
5. Evaluate $\int \frac{1}{1+x} dx$	
(a) By Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.	
(b) Using Simpson's $\frac{3}{8}$ rule.	[8+7]
6. If $f(x) = 1$ in $0 < x < \frac{1}{2}$ Expand $f(x)$ in a series of cosines.	[15]
0. If $\Gamma(x) = -1$ in $\frac{1}{2} < x < -1$ in $\frac{1}{2} < x < -1$	[15]
	dy 2
7. Find $y(.1)$ and $y(.2)$ using Runge-Kutta fourth order formula given that	uл
and y(0)=1.	[15]
8. (a) Find a real root of the equation $xe^x = \cos x$ by Newton Raphson met	thod.
(b) The amount A of a substance remaining in a reaction system after an	interval
of time t in a certain chemical experiment is given by the following c	lata.
t 2 5 8 14 A 04.0 07.0 012 60.7 Find value of A at $t = 11$.	[8+7]
A 94.8 87.9 813 68.7	

?????

R09

Set No. 1

I B.Tech Examinations,December 2010 MATHEMATICAL METHODS Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE Time: 3 hours Answer any FIVE Questions All Questions carry equal marks

- 1. Form the partial differential equations
 - (a) z=f(x-it)+g(x-it)
 - (b) $z=y^2+2f \frac{1}{x} + \log y$.
 - (c) $F(xy+z^2, x+y+z)=0.$

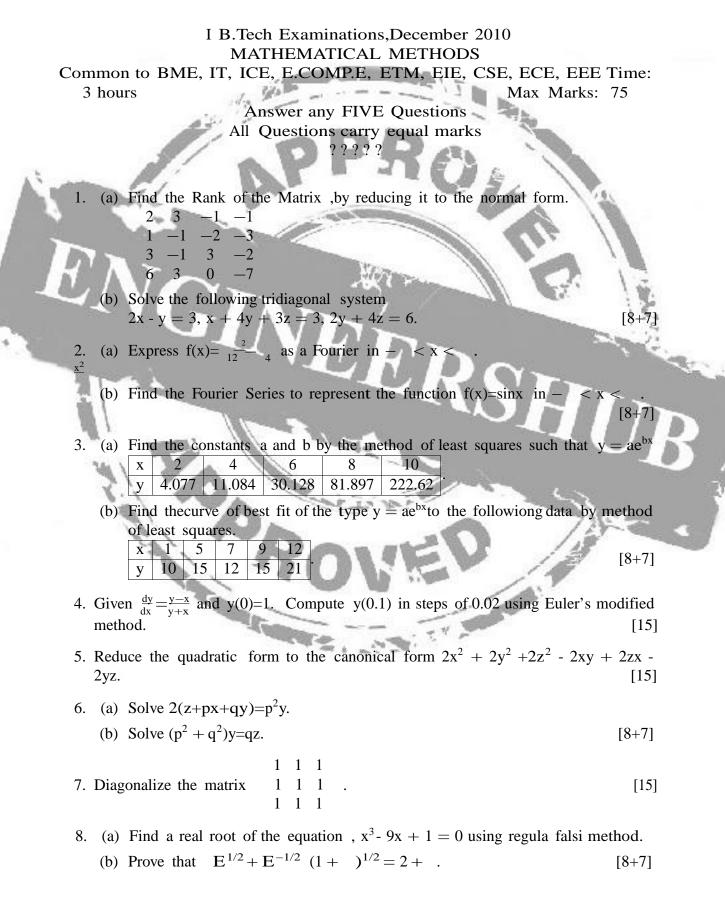
[5+5+5]

[15]

4

2

- 2. (a) Find a real root of the equation $e^x \sin x=1$ using Newton Raphson method
 - (b) Find y(10), Given that y(5) = 12, y(6) = 13, y(9)=14, y(11) = 16 using Lagrange's formula. [8+7]
 - (a) Find the maximum and minimum values of $f = 2x^2 + 2y^2 + 2z^2 2xy + 2zx 2yz$ subject to x + y + z = 1. Also find the point at which the maximum and minimum exists.


(b) Find the nature of the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$. [8+7]

- 4. Verify Cayley Hamilton theorem and find the inverse of
- - (b) Solve the following equations by expressing the coefficient matrix as a product of a lower triangular and upper triangular matrices. x + y z = 5, 2x + y + 2z = 5, 3x + 2y 4z = 7. [7+8]
- 6. Given y[|] = x+siny and y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using Euler's modified method. [15]
- 7. (a) Find the half-range sine series of f(x)=1 in [0, 1].
- (b) Find the half-range cosine and sine series for f(x)=x in (0, 1). [7+8] 8. Evaluate $\frac{R_6}{0} \frac{1}{(1+x)} dx$ by using
 - 0 (1+x)
 - (a) Simpson's $\frac{1}{3}$ Rule.

R09

Set No. 3

?????