R09

Set No. 2

I B.Tech Examinations,December 2010 MATHEMATICS-I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE

Time: 3 hours

Max Marks: 75

7 + 8]

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find L $\frac{\cos 4t\sin 2t}{t}$
 - (b) Find the Laplace inverse transform of log $\frac{s^2}{s^2}$.
 - (a) Test the convergence of the series $1 + \frac{3x}{7} + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \frac{3.6.9.12}{7.10.13.16}x^4 + \dots$
 - (b) Find the interval of convergence for the series $\left[(-1)^n \frac{n(x+1)^n}{2^n} \right]$ [7+8
- 3. (a) Find the length of an arc of the curve $x = e \sin x$, $y = e \cos x$ from 0 to $\frac{1}{2}$
 - (b) Evaluate $x^2 = \frac{RR}{4y}$ y²dxdy were R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = \frac{R}{4y}$ [8+7]
- 4. (a) Find the differential equation of all circles whose radius is r (b) Solve the differential equation $(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^2$
 - (c) Find the equation of the curve, in which the length of the subnormal is proportional to the square of the ordinate. [4+6+5]
- 5. (a) Solve the differential equation $(D^4 + 2D^2 + 1)y = x^2 \cos^2 x$ (b) Solve the differential equation $(D^2 + 2D + 1)y = e^{-x}$ [7+8]
- 6. (a) Expand $e^{x \sin x}$ in powers of x.
 - (b) Find the volume of the greatest rectangular parallelopiped that can be 'inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. [8+7]
- 7. (a) Show that the evolute of the ellipse $x = a \cos y = b \sin i s (ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 b^2)^{\frac{2}{3}}$
 - (b) Show that the envelope of the lines whose equations are $x \sec^2 + y \csc^2 = c$ is a parabola which touches the axes of coordinates. [8+7]
- 8. (a) Find the work done by the force $\overline{F} = (2y + 3) i + xzj + (yz x) k$ when it moves a particle from the point (0,0,0) to (2,1,1) along the curve $x = 2t^2$, y = t and $z = t^3$
 - (b) Use divergence theorem to Evaluate $\int_{s}^{KK} (y^2 z^2 i + z^2 x^2 j + z^2 y^2 k)$. \bar{n} ds where S is the part of the unit sphere above the x y plane. [8+7]

?????

R09

Set No. 4

I B.Tech Examinations,December 2010 MATHEMATICS-I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find L $[(t^2+1)^2]$
 - (b) Find Inverse Laplace transform of $\frac{3s+7}{(s^2-2s-3)^2}$

[7+8]

[7+8]

[7+8]

- 2. (a) Find the radius of curvature at any point on $y^2 = 4ax$ and hence show that the radius of curvature at the vertex is equal to the semi latus rectum.
 - (b) Trace the curve $\mathbf{r} = \mathbf{a} (1 + \cos \theta)$
 - . (a) Test the convergence of the series $\frac{3^2}{6^2} + \frac{3^2 \cdot 5^2}{6^2 \cdot 8^2} + \frac{3^2 \cdot 5^2 \cdot 7^2}{6^2 \cdot 8^2 \cdot 10^2} + \dots$
 - (b) Test whether the following series is absolutely convergent or conditionally convergent $\frac{1}{5 \cdot 2} \frac{1}{5 \cdot 3} + \frac{1}{5 \cdot 4} \dots (-1)^n \frac{1}{5 \cdot n}$ [7+8]
 - (a) Solve the differential equation $(D^2 + 2)y = e^x \cos x$
 - (b) Solve the differential equation $(D^3 + 2D^2 + D)y = x^3$
- 5. (a) If $u = x^2 2y$, v = x + y + z, w = x 2y + 3z find $\frac{(u, v, w)}{(x, y, z)}$

(b) Find the maximum and minimum values of $f(x) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$ [8+7]

- 6. (a) The curve $y^2 (a + x) = x^2 (3a x)$ revolved about the x-axis. Find the volume of the solid generated.
 - (b) Evaluate $\frac{\Re}{0} = \frac{\Re}{0} \frac{\Re^{-y^2}}{(x^2 + y^2)} dx dy by changing into polar coordinates [8+7]$
- 7. (a) Form the differential equation by eliminating arbitrary constants $y = Ae^{x} + Be^{-x}$
 - (b) Solve the differential equation $(e^y + 1) \cos x dx + e^y \sin x dy = 0$
 - (c) Find the curve in which the perpendicular upon the tangent from the foot of the ordinate of the point of contact is constant and equal to a. [4+6+5]
- 8. (a) If \overline{F} and \overline{G} are two vectors, then prove that div $\overline{F \times G} = \overline{F}$ curl $\overline{G} \overline{G}$.curl \overline{F}

(b) Evaluate $\int_{1}^{11} x \, dy + y \, dx$ where c is the loop of the Folium of D' cartes $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$ [8+7]

?????

R09

Set No. 1

I B.Tech Examinations,December 2010 MATHEMATICS-I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE

Time: 3 hours

Max Marks: 75

7 + 81

[8+7]

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find $L[3\cos .3t\cos 4t]$
 - (b) Find the inverse Laplace transform of log 1 +
 - (a) Solve the differential equation $(D^4 2D^3 + 2D^2 2D + 1)y = \cos x$
 - (b) Solve the differential equation $(D^3 3D 2)y = x^2$
- 3. (a) Form the differential equation by eliminating arbitrary constants $Sin^{-1}x + Sin^{-1}y = C$.
 - (b) Solve the differential equation $\int_{x}^{y} \frac{dy}{dx} = \frac{P}{1 + x^2 + y^2 x^2 + y^2}$.
 - (c) Prove that the system of Parabolas $y^2 = 4a(x + a)$ is self orthogonal. [3+6+6]
- 4. (a) Apply Rolle's theorem for sin n cos 2n in 0, -4 and find x such that 0 < x < -4
 (b) Expand e^x. cos y near the point 1, -4 by Taylor's theorem. [7+8]

5. (a) Test the convergence of the series $P_{n=1} \frac{1.3.5...(2n+1)}{2.5.8...(3n+2)}$

- (b) Test the convergence of the series **P**
- 6. (a) Find the radius of curvature at the point on $x = a \log(\sec + \tan)$ and $y = a \sec$
 - (b) Trace the curve $x^3 + y^3 = 3axy$ [8+7]
- 7. (a) Prove that the surface area of the solid generated when the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is revolved about its major axis is 2 ab $\overline{1-e^2} + \frac{\sin^{-1}e}{e}$ where e is the eccentricity of the ellipse.
 - (b) Evaluate (xy + yz + zx)dxdydz, where V is the region of space founded by x=0, x=1, y=0, y=2 and z=0, z=3 [7+8]
- 8. Verify stoke's theorem for $F = (2x y)i yz^2j y^2zk$ over upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy plane. [15]

?????

R09

Set No. 3

I B.Tech Examinations,December 2010 MATHEMATICS-I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE

Time: 3 hours

Max Marks: 75

8+71

[7+8]

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find L $[te_{h}^{2t} \sin 3t]$
 - (b) Find $L^{-1} = \frac{1}{s^3(s^3+1)}$
 - (a) By considering the function $(x 2) \log x$ show that the equation $x \log x = 2 x$ is satisfied by at least one value of x lying between 1 and 2.
 - (b) Find the minimum of $x^2 + y^2 + z^2$ subject x + y z = 3a
- 3. (a) Find the volume of the solid obtained by revolving one arch of the cycloid x=a (+ sin) y = a (1+ cos) about its base.
 - (b) Calculate r^3 drd over the area included between the circles $r = 2 \sin$ and $r = 4 \sin$ [8+7]

4. (a) If F andG are two vectors, then div F × G = F curl G-G .curl F
(b) Evaluate by Greens theorem C (x² − Coshy)dx + (y + sin x)dy where C is the rectangle with vertices (0,0), (, 0), (, 1), (0, 1) [8+7]


- 5. (a) Test the convergence of the series $P_{\frac{2n!}{n!(n)}}$
 - (b) Test the convergence of the series $=\frac{2.5.8....3n-1}{1.5.9....4n-3}$
 - (c) Find the interval of convergence for the following series $\prod_{n^2+1} \frac{(n^2-1)}{n^2+1} x^n$. [5+5+5]
- 6. (a) If CP and CD are a pair of conjugate diameters of an ellipse prove that the radius of curvature at P is $\frac{(CD)^3}{ab}$ a and b being the lengths of the semiarcs of the ellipse.
 - (b) Trace the curve $y^2 = x^2 \frac{(3a-x)}{(a+x)}$ [8+7]
- 7. (a) Find the differential equation of all circles which pass through the origin and whose centers are on x- axis.
 - (b) Solve the differential equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$
 - (c) The rate at which bacteria multiply is proportional to the instantaneous N numbers present. If the original number doubles in 2hrs? When it will be trebled? [4+6+5]

8. (a) Solve the differential equation $(D^2 - 1)y = x \sin x + (1 + x^2)e^x$

R09

(b) Solve the differential equation $(D^2 + 4)y = Tan2x$ [8+7]

